A NOTE ON THE ALMOST SURE EXPONENTIAL STABILITY OF THE MILSTEIN METHOD FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH JUMPS
نویسندگان
چکیده
منابع مشابه
Almost Sure Exponential Stability of Stochastic Differential Delay Equations
This paper is concerned with the almost sure exponential stability of the multidimensional nonlinear stochastic differential delay equation (SDDE) with variable delays of the form dx(t) = f(x(t−δ1(t)), t)dt+g(x(t−δ2(t)), t)dB(t), where δ1, δ2 : R+ → [0, τ ] stand for variable delays. We show that if the corresponding (nondelay) stochastic differential equation (SDE) dy(t) = f(y(t), t)dt + g(y(t...
متن کاملAlmost sure exponential stability of numerical solutions for stochastic delay differential equations
Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of...
متن کاملAlmost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations
By the continuous and discrete nonnegative semimartingale convergence theorems, this paper investigates conditions under which the Euler–Maruyama (EM) approximations of stochastic functional differential equations (SFDEs) can share the almost sure exponential stability of the exact solution. Moreover, for sufficiently small stepsize, the decay rate as measured by the Lyapunov exponent can be re...
متن کاملAn analysis of stability of milstein method for stochastic differential equations with delay
-This paper deals with the adapted Milstein method for solving linear stochastic delay differential equations. It is proved that the numerical method is mean-square (MS) stable under suitable conditions. The obtained result shows that the method preserves the stability property of a class of linear constant-coefficient problems. This is also verified by several numerical examples. (~) 2006 Else...
متن کاملAlmost Sure Exponential Stability in the Numerical Simulation of Stochastic Differential Equations
This paper is mainly concerned with whether the almost sure exponential stability of stochastic differential equations (SDEs) is shared with that of a numerical method. Under the global Lipschitz condition, we first show that the SDE is pth moment exponentially stable (for p ∈ (0, 1)) if and only if the stochastic theta method is pth moment exponentially stable for a sufficiently small step siz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2017
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v116i1.22